2023 年第 4 期 GEOTHERMAL ENERGY · 3 ·

岩溶地区水井钻探中地面塌陷的原因和防治

黄邦忠

(贵州省地矿局 112 地质大队)

摘要: 在水文水井钻探施工过程中, 容易出现井口及井口附近塌陷, 危及正常生产, 严重的地方危及到附近建筑物。本文通过水井钻探过程中出现塌陷的原因进行分析和总结, 以便有效地防治, 并对岩溶地面坍陷处理提出一点浅见。

1 引言

自 2007 年我省开展地下水工作以来,我单位已在省内不同地区完成深井多口,而这些钻孔的取水地层主要是在以碳酸盐岩及碳酸盐岩夹碎屑岩为主的地层,岩性主要以白云岩、灰岩为主,坍陷钻孔主要集中在地下水位埋深较浅,并且多在地下水的径流区和排泄区,因此,分析钻探施工中岩溶地面坍陷成因,有利于今后施工中有效地防治,提高效益,预防灾害发生,减少不必要的损失。

2 钻进工艺

由于喀斯特地区相对地表缺水,施工用水较为缺乏,为了有效地解决干旱地区钻进时的除尘,充分发挥空气压缩机对水下深孔钻进的工作效能,采用空气泡沫潜孔锤钻进。这样既可以发挥空气潜孔锤钻进的优越性,又弥补了空气潜孔锤钻进的不足,又能解决缺水地区施工困难。

空气泡沫潜孔锤钻进原理:为了有效地解决于旱地区钻进时的除尘与取样,排除湿地层钻进的不安全因素,充分发挥空气压缩机对水下深孔钻进的工作效能,采用空气泡沫潜孔锤钻进。这样既可以发挥空气潜孔锤钻进的优越性,又弥补了空气潜孔锤钻进的不足。在空气潜孔锤钻进过程中使用泡沫剂,可以在气流上返速度(0.6~1.2m/s)不大的情况下,借助泡沫携带岩屑上浮,改进和提高气流携带岩屑的能力,以降低对空压机的要求。含有泡沫剂的气流可以携带较大的颗粒上返到地面,保持孔底清洁,减少了岩石重复破碎量,延长钻头寿命。岩屑颗粒外表被泡沫包裹,

形成一层保护膜,防止岩屑粘结,不致形成泥包或泥环。泡沫的润滑性能好,可降低钻进扭矩,减少孔内事故。泡沫剂也可以用于裂隙地层和多孔隙地层钻进及不稳定地层钻进。利用泡沫剂处理孔内漏水,降低了空压机压力和风量的要求。

3 岩溶地面坍陷成因分析

3.1 地质成因

岩溶塌陷是在有覆盖土的岩溶发育区,在特定的水文地质条件下,岩面以上的土体遭到流失迁移而形成土中的洞穴和洞内塌落堆积物以及引发地面变形破坏,岩溶发育愈强烈,岩溶洞隙数量愈多,其规模也愈大,愈易形成岩溶塌陷。岩溶洞隙的发育一般受岩溶地下水排浊基准面的控制,多发育于浅部,向深部逐渐减弱。浅部岩溶洞隙由于地下水活动频繁,交替强烈,一般连通性较好,成为塌陷物质的储集空间和运移通道。岩溶洞隙的开口程度是影响岩溶塌陷形成的重要因素,岩溶地下水的活动,塌陷物质的运移都是通过洞隙开口处进行的,因此,塌陷坑与开口洞隙存在着密切的垂向对应关系,洞隙规模愈大,塌陷也愈大;洞隙开口愈大,塌陷速度愈快。

3.2 施工引起坍陷机理分析

(1)如龙里县三元村,在距钻孔 20m 处产生 坍陷,施工时压缩空气将地下水排出孔外时,地下 水沿地下裂隙通道涌入井内抽出地面时,水平方 向水力坡度和垂直方向的波动幅度飚升,水动力 条件加强,打破了地下水的自然平衡,在岩溶地下 水埋藏较浅、循环交替强烈的地段,岩溶地下水动 力条件易于改变,地下水活动变化强烈,这些变化 将使洞隙顶板的力学平衡状态恶化,处于地下水位以下的岩土体都受到地下水浮托力的作用,由于施工时的外力作用使地下水位下降,水位下降时浮托力消减,这样使盖层的稳定性降低导致失稳,岩溶上的松散颗粒被地下水沿岩溶裂隙、溶洞带出地表而产生塌陷。

- (2) 花溪磊庄村,水井施工使用 6 个月后孔口产生坍陷,钻孔在抽水过程中,地下水流在其流径上对土、岩颗粒产生的动水压力使其移动带走的作用,动力水的大小取决于地下水的坡降,产生潜蚀作用的起始水力坡降称为临界水力坡降,它的大小取决于土的组成成分与结构,沿着岩溶地下水流方向上的水平渗透潜蚀,在自然条件下因其水力坡降较小一般不易产生。抽水时将地下水快速排出地表,水位急剧下降,这时地下水的坡降流速增大,从而对岩溶洞隙通道中的松散充填物和复盖会产生潜蚀、冲刷和淘空,岩溶洞隙充填物和复盖会产生潜蚀、冲刷和淘空,岩溶洞隙充填物被带走,在复盖层底部的洞隙开口处形成空洞,在岩溶水位下降到基岩顶板之前继续受到潜蚀、冲刷而逐渐扩展而导致坍陷。
- (3)安顺市兰翠村,施工时导致地面由孔口沿西北方向直线产生 100 余米岩溶断面塌陷,并危及建筑物。主要是岩溶地下水位大幅度下降在封闭的岩溶洞隙空间产生负压,对复盖层土体产生附加吸力而使其遭到吸蚀剥落并向下迁移,对于上复土体中所含的水,负压使其增加了向下渗透的附加水头,从而加剧了对土体的潜蚀作用,加速土体的破坏,在压缩空气的作用下,岩溶地下水位沿岩溶管道或断裂面上升,封闭较好的岩溶洞隙空间的气体受压形成高压气团,对其周围的岩土体产生正压作用,当盖层较薄时,可冲破盖层岩土体,形成气爆,造成岩溶断裂上复盖岩土体发生崩解和剥落,促进其扩展,岩土体随地下水向下迁移而产生塌陷。
- (4) 岩溶地下水的活动在岩溶塌陷的形成中 具有多种作用,是一种十分重要的动力因素,地下 水具有:溶蚀作用、改变土体的状态作用、浮托作 用、渗透潜蚀作用、岩溶洞隙空间的正负压力作 用、散解作用、水击作用、侵蚀和搬运作用等,在 钻探施工中由于压缩空气作用和抽取地下水时加 剧了上述作用,打破地下水平衡状态,地下水水力

坡降加大,流速加快,这些充填物被迁移搬运,并 在塌陷发育过程中不断将塌落物质带走,这样塌 陷才能不断发展,直至达到新的平衡。

4 施工防治

(1)止水固井

采取适宜的开孔措施,开孔钻进至中风化岩石,根据钻孔位置,入岩不小于5米,下井口管(定向管)的同时采用泵注水泥浆作永久性止水,为防止外部水流回灌,用快干水泥砂浆固结井口管周围,避免雨水或井内空压机吹出的水从井口管外的环状间隙回灌孔内,造成地面塌陷,待水泥浆凝固后再采用小一径的风动潜孔锤施工。

(2)技术防治

遇较大裂隙、溶洞时,应用技术套管隔离;在 遇到大裂隙、溶洞时,地下水在压缩空气作用下迅 速排出孔外,水力坡度快速加急,为防止地下水经 溶洞、裂隙向钻孔流入,应在钻穿溶洞、裂隙底板 后注入水泥浆,下入无缝钢管作技术套管隔离。

(3)观察、取样、判断

在施工过程中,首先随时观察排出的岩粉情况,每 2~3m 取一次岩粉样品,判别岩石是否变化;观察出水位置和出水量情况,上返风量和风速,施工中是否有裂隙或溶洞等等地质不良因素存在;其次观察钻孔周边地面、泉点等有无变化,地面是否有气泡,泉点内水是否变浑浊或水位有变化等等,如有应立即采取措施,钻穿溶洞或裂隙底板进入完整岩石后进行第二次止水,用无缝钢管和水泥浆影响部位封堵,与完整岩面固结成块状,结石体(层)形成相对完整的顶板,切断岩土层中的岩溶通道,从而达到标本兼治的目的。

5 处理方案

- (1)清除填堵法:常用于塌坑较浅或浅埋的土洞,首先清除其中的松土,填入块石、碎石,做成反滤层,然后上覆粘土夯实。
- (2) 夯实法: 夯实塌陷后松软的土层和塌陷坑或土洞内的回填土,以提高土体强度; 另一方面可消除隐伏土洞和软弱带, 是一种处理结合预防的措施。
- (3)灌注法:采用注浆法将水泥浆从高压向低 压方向运动,首先填充地下无压地带(如空洞、土

洞、或半充填、全充填流动稀泥的溶洞),当空洞充满之后,水泥浆必然将通过岩溶向压力最小的地表扩散。通过注浆切断土石界面的岩溶通道,一方面形成降落漏斗上的完整顶板,阻止岩溶天窗上部土颗粒运移。另一方面改变地下水的渗流路线,降低了地下水的水力坡度,从而降低了水对土颗粒的搬运能力。

6 结 语

风动潜孔锤钻探在岩溶地区施工引起地面塌

陷是较为普遍的问题,分析和总结岩溶地面坍陷 成因是预防塌陷的重要因素,预防措施是在查明 塌陷成因、影响因素和致塌效应的基础上,为了清 除或消减塌陷发生发展主导因素的作用而采取的 工程措施。除上述外,调整抽水井孔布局,控制抽 水井的降深和抽水量,限制开采井的抽水井段也 很重要,因此,在水井钻孔施工时,针对岩溶塌陷 的发育条件和成因,做好防治工程设计。

转自《贵州地质》第3期(总第116期)

甘肃建材院兰州国际机场中深层地热供暖项目开工!

甘肃省建材科研设计院有限公司

3月15日,中国地热产业工作委委员单位——甘肃省建材科研设计院有限责任公司承建的兰州中川国际机场三期扩建飞行区保障区中深层地岩热供热工程项目开工仪式在兰州新区隆重举行。

该项目依托省建材院自主知识产权的中深层 无干扰地岩热技术,为兰州中川机场三期提供高 效节能的清洁供暖,供热量 4800kW,配置 8 口换 热孔,4 台地岩热机组及相应的附属设备。该技术 井下封闭换热,取热不取水,对地下水、土壤等自 然环境无干扰,全过程均为低温、低压交换过程, 可实现自动化控制,安全可靠,运行成本低。

项目建成后,可在一个采暖季节约标煤 1535 吨, CO₂ 减排约 3792 吨, SO₂ 减排约 31 吨, 粉尘 减排约 16 吨,节能减排效果十分显著,具有良好的社会、环境和经济效益,为四型机场增添科技亮

点、注入绿色元素,对推动双碳经济协同发展具有重要示范效应。本项目的实施拓宽了无干扰地岩热技术的应用场景,也标志着甘肃科技集团实施科技成果转化、产业化取得了新成就,达到有效调整和平衡机场能源供需结构、推动节能减排、提高能源利用效率、提升管理运营水平的目标。

截至目前,甘肃建材院在建和投入使用的有 12 个中深层地岩热供暖项目,供热面积达到 100 万 m²。目前已受理或授权的与地热能相关的专利 29 件,其中 2 件为国际专利,并于 2018 年编制了国内首个中深层地岩热供暖地方标准。中深层地岩热供抵作为一种绿色低碳技术,入选国家《绿色技术推广目录》,是《"十四五"可再生能源发展规划》中重点推动的科技成果转化项目,对我国实现"双碳"战略目标、能源绿色低碳转型具有十分重要的意义。

转自:地热加 APP